Chronic hypoxia modulates diaphragm function in the developing rat.

نویسندگان

  • L J Kass
  • A R Bazzy
چکیده

We studied the effect of chronic hypoxia on contractile properties and neuromuscular transmission in the developing rat diaphragm. We hypothesized that chronic hypoxia delays maturation of neuromuscular transmission. Phrenic nerve hemidiaphragm preparations were harvested from 3- to 26-day-old rats and littermates raised in 9.5% oxygen. Specific force, contraction time, and one-half relaxation time were measured. Each diaphragm was stimulated directly or via its nerve with 1-s trains at 10-100 Hz. Contraction time and one-half relaxation time decreased with advancing age in both groups, with a greater rate of decrease in hypoxic diaphragms. Specific force was lower for hypoxic diaphragms compared with controls. Diaphragms from the 3- to 10-day-old control and hypoxic groups generated less force in response to stimulation at frequencies >40 Hz but did so to a greater degree with nerve stimulation. Nerve stimulation of diaphragms from 11- to 18-day-old hypoxic rats showed a greater decrease in force with increasing frequency compared with age-matched controls. Diaphragms from 19- to 26-day-old rats showed no difference between the hypoxic and control groups. We conclude that chronic hypoxia leads to diaphragms that generate lower specific force as well as to a delayed maturation of mechanisms involved in neuromuscular transmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bazzy developing rat Chronic hypoxia modulates diaphragm function in the

physiology, especially those papers emphasizing adaptive and integrative mechanisms. It is published 12 times a publishes original papers that deal with diverse area of research in applied

متن کامل

The effect of aminophylline on function and intracellular pH of the rat diaphragm.

We studied the effect of aminophylline on twitch tension (TT) and intracellular pH (pHi) in isolated rat diaphragm strips that were fatigued, hypercapnic, or hypoxic. Superfused muscles were directly stimulated at 0.5 Hz. The pHi was measured from distribution volumes of dimethyl-oxazolidinedione. Fatigue was induced by intermittent tetanic stimulation. Hypercapnia and hypoxia were produced by ...

متن کامل

Tempol relieves lung injury in a rat model of chronic intermittent hypoxia via suppression of inflammation and oxidative stress

Objective(s): Obstructive sleep apnea (OSA) is confirmed to cause lesions in multiple organs, especially in the lung tissue. Tempol is an antioxidant that has been reported to restrain inflammation and oxidative stress, with its role in OSA-induced lung injury being unclear. This study aimed to investigate the beneficial effect of tempol on chronic intermittent hypoxia (IH)-induced lung injury....

متن کامل

Effects of modulation of nitric oxide on rat diaphragm isotonic contractility during hypoxia.

Nitric oxide (NO) is essential for optimal myofilament function of the rat diaphragm in vitro during active shortening. Little is known about the role of NO in muscle contraction under hypoxic conditions. Hypoxia might increase the NO synthase (NOS) activity within the rat diaphragm. We hypothesized that NO plays a protective role in isotonic contractile and fatigue properties during hypoxia in...

متن کامل

Effects of Gestational and Postnatal Exposure to Chronic Intermittent Hypoxia on Diaphragm Muscle Contractile Function in the Rat

Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 90 6  شماره 

صفحات  -

تاریخ انتشار 2001